
IT Development Division

Trading Systems Development Department

OASIS MDFS Specification

Version: 0.15

Page 2 of 38

Revision History

Version Date Description

0.12 2024/03/11 UAT release.

0.13 2024/04/16 Removed sections for unused instructions “Delete Thru”, “Delete From” and
“Overlay” from section “Order Book Handling”.

0.14 2024/05/24 1. Updated section “2.1. Multicast Groups & Services” and table “Figure 4 -
Instrument Type Groupings”.

2. Updated formatting of section “5. Order Book Handling” for consistency with
updated FIX message content.

0.15 2024/07/24 1. Updated section ”3.6. TCP/IP Retransmission Service”.
2. Updated section “4. FAST Message Encoding”.
3. Updated section “5. Order Book Handling”.
4. Updated section “6.1 Comparison With Legacy IDS Service (IOCP)

Page 3 of 38

Table of Contents

Revision History ..2

Table of Contents ...3

Table of Figures ..5

1. Introduction ..6

2. Architecture Overview ..7

2.1. Multicast Groups & Services ...7

2.2. Incremental Feed Approach ..9

3. Connection Procedure & Data Flow .. 10

3.1. Initial Connection Procedure ... 10

3.2. Updating the Order Book ... 10

3.3. Handling Data Feeds on Services A&B ... 10

3.4. Handling Gaps in Message Sequence Numbers ... 11

3.5. Recovery via Snapshot ... 11

3.6. TCP/IP Retransmission Service ... 12

 TCP/IP Retransmission Procedure ... 12

4. FAST Message Encoding .. 15

4.1. Packet Structure ... 15

4.2. Data Types .. 16

4.3. Templates & Implicit Tagging ... 16

4.4. Mandatory and Optional Fields ... 16

4.5. Field Operators... 16

4.6. Presence Map (PMAP) ... 17

4.7. Stop Bit Encoding ... 17

4.8. Binary Encoding .. 17

4.9. Decoding Overview .. 17

4.10. Decoding Example .. 18

5. Order Book Handling ... 20

5.1. Market & ATO/ATC orders ... 21

5.2. Empty Book .. 21

5.3. Top of the Book .. 22

 New – Addition to an empty side .. 22

Page 4 of 38

 Change – Change of volume / no. of orders.. 23

 Delete – A side becomes empty .. 24

5.4. Price Depth Book .. 25

 New – Level insertion at the bottom of the book ... 25

 New – Level insertion, causing a shift ... 26

 New – Level insertion, causing the deletion of the last level .. 27

 Change – Change of a level’s volume / no. of orders .. 28

 Delete – Level deletion from the bottom of the book .. 29

 Delete – Level deletion, causing a shift ... 30

5.5. Order Depth Book .. 31

 New – Entry Insertion at the bottom of the book ... 31

 New – Entry insertion, causing a shift ... 32

 Change – Change of an entry’s volume ... 33

 Delete – Entry deletion from the bottom of the book .. 34

 Delete – Entry deletion, causing a shift ... 35

5.6. Order Books in Snapshots .. 36

6. Appendix .. 37

6.1. Comparison With Legacy IDS Service (IOCP) .. 37

6.2. FAST Template XML Example ... 38

Page 5 of 38

Table of Figures

Figure 1 - Multicast Overview...7
Figure 2 - Incremental Multicast Groups ..7
Figure 3 - Snapshot Multicast Groups ..8
Figure 4 - Instrument Type Groupings ..8
Figure 5 - Messages per Group type...9
Figure 6 - Services A & B Example ... 11
Figure 7 - Handling Message Sequence Gaps .. 11
Figure 8 - TCP/IP Retransmission... 13
Figure 9 - FAST Packet Structure ... 15
Figure 10 - FAST Decoding Example .. 18

Page 6 of 38

1. Introduction

The ATHEX Market Data Feed Service (MDFS) provides real time, trading data feed information for all instruments

traded in the OASIS platform.

The MDFS provides data using the Financial Information eXchange (FIX) Protocol which is a technical specification

that is owned, maintained, and developed through the collaborative efforts of FIX Trading Community. More

specifically the data format follows the FIX 5.0 SP2 specification and the data is encoded according to the FAST 1.2

specification. Some messages, tags and tag values from FIX Extension Packs the FIX 5.0 SP2 specification are

utilized in MDFS messages.

The FIX protocol is an industry standard used by institutions, market participants and vendors worldwide. It

facilitates the streamlined, open, and adaptable exchange of information between counterparties and is used in

multiple aspects of trading, including the dissemination of market data (such as that served by the MDFS).

The FAST encoding method is a binary encoding method for message oriented data streams that aims to be space

and processing efficient. It reduces the size of a data stream by removing redundant data and serializing of the

remaining data through binary encoding, self-describing field lengths and bit maps indicating the presence or

absence of fields. The FAST encoding method is widely used by institutions serving market data to reduce the data

stream size and remove any unnecessary overhead, allowing for reduced latency and bandwidth consumption.

The MDFS delivers market data by implementing an incremental / snapshot message approach that is outlined by

the FIX Trading Community, using UDP multicast as the network transport protocol. This approach enables a rich

and performant market data feed with minimal latency.

A brief comparison with the legacy IDS Service (IOCP) can be found in section 5.1 of the Appendix.

https://www.fixtrading.org/
https://www.fixtrading.org/standards/fix-5-0-sp-2/
https://www.fixtrading.org/standards/fast/
https://www.fixtrading.org/extension-packs/
https://www.fixtrading.org/standards/fix-5-0-sp-2/

Page 7 of 38

2. Architecture Overview

2.1. Multicast Groups & Services

The MDFS utilizes UDP multicast transport for the dissemination of all data. The data is split into different feeds,

with each feed receiving messages pertaining to specific Venues, Product Categories, and message types. The

following tables are an example of how the multicast groups for each feed are organized:

Venue Instrument Type Group Venue Instrument Type Group

Venue 1

Cash
&

Index

General

Venue 2

Cash
&

Index

General

Order Depth Order Depth

Top of Book Top of Book

Price Depth 5 Price Depth 5

Price Depth 10 Price Depth 10

Trades Trades

Bonds

General

Bonds

General

Order Depth Order Depth

Top of Book Top of Book

Price Depth 5 Price Depth 5

Price Depth 10 Price Depth 10

Trades Trades

Derivatives

General

Derivatives

General

Order Depth Order Depth

Top of Book Top of Book

Price Depth 5 Price Depth 5

Price Depth 10 Price Depth 10

Trades Trades
Figure 2 - Incremental Multicast Groups

FIX / FAST Client

MDFS

MDFS

MDFS

Service A

Service B

Figure 1 - Multicast Overview

Page 8 of 38

Venue
Instrument

Type
Group Venue

Instrument
Type

Group

Venue 1

Cash
&

Index

General Snapshots

Venue 2

Cash
&

Index

General Snapshots

Order Depth Snapshots Order Depth Snapshots

Top of Book Snapshots Top of Book Snapshots

Price Depth 5 Snapshots Price Depth 5 Snapshots

Price Depth 10 Snapshots Price Depth 10 Snapshots

Trades Snapshots Trades Snapshots

Bonds

General Snapshots

Bonds

General Snapshots

Order Depth Snapshots Order Depth Snapshots

Top of Book Snapshots Top of Book Snapshots

Price Depth 5 Snapshots Price Depth 5 Snapshots

Price Depth 10 Snapshots Price Depth 10 Snapshots

Trades Snapshots Trades Snapshots

Derivatives

General Snapshots

Derivatives

General Snapshots

Order Depth Snapshots Order Depth Snapshots

Top of Book Snapshots Top of Book Snapshots

Price Depth 5 Snapshots Price Depth 5 Snapshots

Price Depth 10 Snapshots Price Depth 10 Snapshots

Trades Snapshots Trades Snapshots
Figure 3 - Snapshot Multicast Groups

Each multicast group is served to a specific IP Address & UDP Port combination. All Incremental multicast groups

will be transmitted via the UDP port 10000, and all Snapshot multicast Groups will be transmitted via the UDP

port 20000. Each client connects to multiple feeds that disseminate information relevant to them.

The association of the Instrument Type groupings in the tables above with the value of FIX tag “20011=

ATHEXSecurityCategory” can be seen in the following table:

Instrument Type Grouping Value of FIX Tag “20011= ATHEXSecurityCategory”

Cash & Index 0 = Stock / Rights
1 = ETF
2 = Warrant
3 = Stock Index
4 = ETF Indicative Net Asset Value (INAV)

Bonds 5 = Bond

Derivatives 6 = Option
7 = Future
8 = Repo
9 = Standard Combination

Figure 4 - Instrument Type Groupings

Page 9 of 38

An overview of the messages sent via each Group type can be seen on the following table:

Group Type Messages

General
General Snapshots

Security Status
Trading Session Status
News
Index Value
Closing Price
Start of Day Price
High/Low Limit Modification
Instrument Summary
Auction Price

Order Depth
Order Depth Snapshots

Empty Book
Order Depth Update

Top of Book
Top of Book Snapshots

Empty Book
Top of Book Update

Price Depth 5
Price Depth 5 Snapshots

Empty Book
Price Depth Update (Up to 5 levels)

Price Depth 10
Price Depth 10 Snapshots

Empty Book
Price Depth Update (Up to 10 levels)

Trades
Trades Snapshots

Trade

Figure 5 - Messages per Group type

The details for all message types are available in the “OASIS MDFS - Message Reference” document.

There may also exist some multicast groups which do not follow the general structure described in the tables

above, the details of which will be made available through other means.

The MDFS replicates all feeds on two identical Services (A & B). This is done to combat the inherent unreliability

of the UDP protocol, where the delivery of data packets is not guaranteed resulting in cases of lost packets. It is

strongly recommended that clients connect to both services in order to handle any such incidents.

2.2. Incremental Feed Approach

The MDFS follows the paradigm of incremental data feed messages, as outlined by the FIX Trading guideline. This

approach relies on Snapshot messages to deliver the initial / current state of all instruments included in the data

feed and subsequent incremental messages to keep that state up to date throughout the trading session.

By utilizing this paradigm, the MDFS achieves lower bandwidth consumption and uses a minimal number of

commands to update the instruments’ order books.

Page 10 of 38

3. Connection Procedure & Data Flow

3.1. Initial Connection Procedure

A client connection to the MDFS should follow these steps to connect to the data feed and receive real-time

information (repeat for each Venue & Product Type of interest):

1. Download reference data using the RDS service.

2. Start listening to the Incremental feed and buffer all messages.

3. Start listening to the Snapshot Feed. Discard all messages until you reach the message indicating the start

of a snapshot cycle. Keep listening until you receive the message indicating the end of the snapshot cycle.

4.

5. Disconnect from the Snapshot Feed. Once you have received a full snapshot cycle you will have all the

information needed to build the order book baseline for each instrument disseminated in the

accompanying incremental stream.

6. Discard all buffered incremental messages with a value less than or equal to the lowest value of tag “369

= LastMsgSeqNumProcessed” among all snapshot messages received in this snapshot cycle.

7. Apply all the remaining buffered incremental messages to the instruments’ order books.

8. Keep processing the incoming incremental messages to update the instruments’ order books in real time.

3.2. Updating the Order Book

As long as the values of tag “34 = MsgSeqNum” in the messages received from the incremental feed are

contiguous, the client should keep processing them and applying them to the corresponding order book.

3.3. Handling Data Feeds on Services A&B

As mentioned before the MDFS replicates all feeds on two identical Services (A & B). This is done to combat the

inherent unreliability of the UDP protocol, where the delivery of data packets is not guaranteed and there may be

cases of lost packets. It is strongly recommended that clients connect to both services in order to handle any such

incidents non-disruptively (without resorting to recovery via snapshot).

In a typical scenario the client (assuming they are connected to both Service A & B) should, for each message with

a distinct value in tag “34 = MsgSeqNum”, keep the message received first from either service and discard the

subsequent copy they receive from the other service.

The following table is an example of the typical data flow on Services A & B, where the shaded cells represent the

messages the client should keep, discarding the rest:

Page 11 of 38

Order
Tag 34 = MsgSeqNum

Service A Service B

1 100

2 100

3 101

4 101

5 102

6 102

7 103

8 103
Figure 6 - Services A & B Example

3.4. Handling Gaps in Message Sequence Numbers

The client should always check the tag “34 = MsgSeqNum” for gaps in the message sequence of any feed they

are connected to. In the case of a gap in the sequence numbers in either of the two services the client should

receive the message through the other service (assuming they are connected to both Service A & B).

The following table is an example of a scenario in which a sequence number gap occurs in one of the services,

where the shaded cells represent the messages the client should keep:

Order
Tag 34 = MsgSeqNum

Service A Service B

1 100

2 100

3 101

4 101

5 102

6 103

7 103
Figure 7 - Handling Message Sequence Gaps

In the example above the message with tag “MsgSeqNum = 102” was not received through Service A, but was

received through Service B. In this case the client should have no interruption of data flow as they can utilize the

message received from Service B.

3.5. Recovery via Snapshot

In the unlikely occasion where a message is not available through either Service A or B then the client should

follow the same procedure that is described in section 3.1 Initial Connection Procedure, to perform recovery via

snapshot.

Page 12 of 38

3.6. TCP/IP Retransmission Service

In addition to the previously detailed methods of recovery, the MDFS provides a TCP/IP Retransmission Service.

This service provides a way for clients to request a limited number of FIX/FAST messages that have previously

been disseminated via the UDP multicast groups. Usage of this service may be desirable if:

• A gap in FIX message sequence numbers is detected in both Service A & B and recovery via Snapshot

messages is inadequate.

• The client needs to receive a number of incremental messages that were sent earlier during the day.

The service is only intended as a recovery mechanism, and not as a means to receive the data feed during the day.

Some details and limitations of the service are:

• A single retransmission session may be active per client at any given time, the MDFS will not accept any

sessions after the first.

• Each client can send a maximum of 10,000 requests per day.

• Each request can have a maximum range of 1,000 messages.

 TCP/IP Retransmission Procedure

The TCP/IP Retransmission Service allows the user to request a specific number of messages that have been sent

via a specific multicast group (that the user has access to) and receive them in the same TCP/IP FIX session. The

retransmission procedure is as follows:

1. The client establishes a TCP/IP connection with the MDFS.

2. Once the session is established, the client sends a “Logon” message.

3. The MDFS replies to the client’s “Logon” message, accepting it with “Logon” acknowledgment message

or rejecting it with a “Logout” message.

4. If the logon attempt was successful, both client and MDFS reset their MsgSeqNum to 1, after which the

client sends an “ApplicationMessageRequest” message containing:

• The multicast group the messages are requested from.

• The range of sequence numbers of the requested messages.

5. The MDFS replies to the retransmission request, accepting with an “ApplicationMessageRequestAck”

message or rejecting it with a “Reject” or “BusinessMessageReject” message.

6. If the retransmission request was accepted, the MDFS will start sending the requested messages

encapsulated in “MulticastDataRetransmission” messages. The tag “95 = RawDataLength” contains the

length of the encapsulated message, while the tag “96 = RawData” contains the actual FAST message, as

it was sent via multicast.

7. After all requested messages have been sent, the MDFS will send an “ApplicationMessageReport”

message to the client, informing him that the retransmission is complete, containing the number of

messages sent and the range of sequence numbers sent.

8. After the retransmission is completed, the MDFS will close the TCP/IP session by sending a “Logout”

message.

Page 13 of 38

The following diagram illustrates a typical TCP/IP retransmission session:

Figure 8 - TCP/IP Retransmission

Some details regarding the TCP/IP Retransmission procedure above are:

• The requested messages are encapsulated in “UMDR = MulticastDataRetransmission” messages, thus

allowing for them to be retransmitted unaltered to the client. The exact same FAST message that was

broadcasted in the Multicast Group will be contained in tag “96 = RawData”.

• Heartbeat messages sent in the Multicast Groups always have tag “34 = MsgSeqNum” with a value of “0”,

and they are not included in the messages sent via the Retransmission Service, thus the client will only

receive Market Data messages in the Retransmission.

• For the FIX session in the Retransmission Service the clients will need to use the appropriate

TargetCompID and SenderCompID field values:

o TargetCompID = ”ATHEX”

o SenderCompID = The Username that will be provided for you to use in the Retransmission Service

• Logon requests may be rejected for the following reasons:

o The provided credentials are incorrect.

o The client has another active TCP/IP session for the Retransmission Service.

o The maximum number of retransmission requests per day has been exceeded.

• Retransmission requests may be rejected for the following reasons:

o The requested multicast group is invalid.

o The client is not authorized to access the requested multicast group.

o The requested messages are not available (i.e. invalid range).

o The requested range exceeds the maximum retransmission range.

o A request has an invalid or duplicate ID in tag “1346 = ApplReqID”.

TCP/IP

Retransmission

Service

Client

A = Logon (request)

A = Logon (reply)

BW = ApplicationMessageRequest

Requested messages start
…

UMDR = MulticastDataRetransmission
…

Requested messages end

5 = Logout

BX = ApplicationMessageRequestAck

BY = ApplicationMessageReport

Page 14 of 38

o The FIX message is ill-formed or does not match the Protocol specifications.

• After the retransmission request has been processed, the MDFS will close the TCP/IP session.

• The MDFS has a timeout of 5 seconds between “Logon” and “ApplicationMessageRequest” messages. If

the client does not send a “ApplicationMessageRequest” within 5 seconds of receiving the “Logon” reply,

the MDFS will close the session by sending a “Logout” message.

• The MDFS will provide two IP addresses for the TCP/IP Retransmission Service (A & B) that can be used

interchangeably.

• The requested retransmission range is specified via the tags “1182 = ApplBegSeqNum” and “1183 =

ApplEndSeqNum”. If the “1183 = ApplEndSeqNum” tag’s value is 0, then the server will retransmit

messages with sequence numbers starting from “1182 = ApplBegSeqNum” until either the limit per

request is reached, or until there are no more messages left to send for the requested multicast group.

Page 15 of 38

4. FAST Message Encoding

The FAST Protocol (SM) is developed, maintained and supported by the FIX Trading Community’s Market Data

Optimization Working Group. The protocol is intended to enable efficient use of bandwidth in high volume

messaging without incurring material processing overhead or latency. The MDFS’ implementation is based on the

FAST 1.2 specification. Please refer to the documentation available at the provided link for more details regarding

encoding and decoding FAST FIX messages.

The following methods are utilized for data compression:

• Implicit Tagging

• Optional Fields

• Field Operators

• Presence Maps

• Stop-bit Encoding

• Binary Encoding

These methods are further explained in subsequent sections of this document.

The FAST format encoding rules for MDFS are distributed as XML Templates.

4.1. Packet Structure

The following table is a representation of a FAST Packet:

FAST Encoded Message

Message
PMAP

Fields / Groups

Sequence (Repeating Group)

Fields/Groups

Field /
Group

1
…

Field /
Group

n

Instance 1
…

Instance m Field /
Group

1
…

Field /
Group

n PMAP
Fields /
Groups

PMAP
Fields /
Groups

Figure 9 - FAST Packet Structure

Where:

• Field: A FAST-encoded FIX tag.

• Group: A group of FAST-encoded FIX tags, that usually appear together. Appears as a <group> element in FAST

.xml templates.

• Sequence (Repeating Group): A FIX repeating group. Appears as a <sequence> element in FAST .xml

templates.

• Instance: An instance of a FIX repeating group.

https://www.fixtrading.org/standards/fast/

Page 16 of 38

4.2. Data Types

The following data types used in FAST templates:

• Signed and unsigned 32/64-bit integer

• Decimal number

• Length

• String - ASCII (7-bit) strings (no special characters allowed)

• Byte vector

4.3. Templates & Implicit Tagging

Every FAST message has a template ID as the first integer field that will be used by the decoder to choose what

template will be used to decode it. The template describes what fields from the original FIX message are included,

their types and transfer encodings.

By having a fixed field order, FAST templates reduce redundancies within a message, as the field meaning is

deferred by its position in the message and there is no need to transfer the field tag to describe the field value. If

the original FIX message contains fields that are not specified in the template, they are simply ignored when

encoding, and as such do not need to be decoded as well.

There can be several templates for the same FIX message (“MsgType = X’, for instance), but referring to different

versions of the message layout.

The templates are distributed in a single XML file. An example of the format can be found in section 6.2 of the

appendix.

4.4. Mandatory and Optional Fields

The optional presence attribute indicates whether the field is mandatory or optional. If the attribute is not

specified, the field is mandatory.

4.5. Field Operators

Field operators are used to remove redundancies in the data values. The message templates (which are provided

beforehand) serve as the metadata for the message. Upon receiving a message, the recipient has complete

knowledge of the message layout via the template definition and is able to determine the field values of the

incoming message.

The operators used by the MDFS are:

Page 17 of 38

• (None): The field will be encoded as is.

• Constant: The field will always have a predetermined value.

• Default: The field is omitted from the message if it is equal to the default value. Used in MDFS templates

to force the usage of a PMAP bit for the field.

More details about these operators can be found in the FAST Specification documents.

4.6. Presence Map (PMAP)

The presence map is a bit map indicating the presence or absence of a field in the message body. One bit is used

in the PMAP for each field that requires it. The allocation of a bit for a field in the presence map is governed by

the FAST field encoding rules.

4.7. Stop Bit Encoding

All FAST fields are stop bit encoded with the exception of byte vectors. Instead of using a length indicator or the

standard FIX-separator (<SOH> byte), each byte consists of 7 bits for data transfer and the 8th bit to indicate the

end of a field value.

4.8. Binary Encoding

Binary encoding is used on numbers, rendering them into binary across the 7 data bits in each byte. Thus, a number

less than 2^7-1, (127) will only occupy one byte, a number between 2^7 and 2^7*2 – 1 (16,383), will occupy two

bytes etc.

4.9. Decoding Overview

The following is a brief overview of the steps required to decode a FAST message to the underlying FIX format:

1. The client receives a FAST encoded FIX message.

2. Template Identification.

3. Extraction of binary encoded bits.

4. Mapping the received bits to template fields.

5. Field decoding using operators to determine values according to the template.

6. Generation and processing of the FIX message.

Page 18 of 38

4.10. Decoding Example

 The following table provides a detailed example on how to decode a FAST-encoded message. The template

used in this example can be found in section 6.2 of the appendix.

Message Data
Hex: 0XF8 0xA2 0x82 0x54 0x45 0X53 0xD4 0x82 0XB0 0xFF 0x04 0x9E 0x81 0x02 0xAC
Binary: 11111000 10100010 10000010 01010100 01000101 01010011 11010100 10000010 10110000 1111111
00000100 10011110 10000001 00000010 10101100
Message PMAP: 11111000

Field
Attributes

/
Operators

Type Presence
PMAP Bit
Required

PMAP
bit

Encoded
Value

Stop Bit
Decoded

Value
Value

 Template ID None uInt32 Mandatory true 1 10100010 _0100010 34

1 35 =MsgType Constant string Mandatory false “W”

2 1021 = MDBookType Default uInt32 Optional true 1 10000010 _0000010* 1

3 55 = Symbol Default string Optional true 1

01010100
01000101
01010011
11010100

01010100
01000101
01010011
01010100

“TEST”

Sequence (Repeating Group) Data
Hex: 0x82 0xB0 0xFF 0x04 0x9E 0x81 0x02 0xAC
Binary: 10000010 10110000 1111111 00000100 10011110 10000001 00000010 10101100

4 268 = NoMDEntries Default length Mandatory true 1 10000010 _0000010* 1

Repeating Group Instance Data
Hex: 0xB0 0xFF 0x04 0x9E 0x81 0x02 0xAC
Binary: 10110000 1111111 00000100 10011110 10000001 00000010 10101100
PMAP: 10110000

5 1023 = MDPriceLevel Default uInt32 Optional true 0

6 270 = MDEntryPx Default decimal Optional true 1

Exponent:
1111111

Mantissa:
00000100
10011110

Exponent:
_1111111
→ 10^-1

Mantissa:
_0000100
_0011110
→542

54.2

7 271 = MDEntrySize Default decimal Optional true 1

Exponent:
10000001

Mantissa:
00000010
10101100

Exponent:
_0000001*
→ 10^0

Mantissa:
_0000010
_0101100
→ 300

300

Figure 10 - FAST Decoding Example

Page 19 of 38

* To decode Positive arithmetic fields that are nullable (according to the FAST protocol standard) we need to

take the positive value of the result (without the stop bits) and subtract 1 from it. That is why i.e NoMDEntries

which results to 00000010 without the stop bit is translated to 1, or why the exponent for MDEntrySize which

results to 0000001 without stop bit is translated to 0.

Note:

Utilized PMAP bits are in bold.

Stop bits are underlined.

Page 20 of 38

5. Order Book Handling

This section contains instructions on how to maintain the different types of order books for an instrument.

The three types of order books supported by the MDFS are:

• Top of the Book

• Price Depth

• Order Depth

For each instrument, the client can keep these order books up to date by following the instructions contained in

this section when processing the Incremental messages received through the MDFS. Keep in mind that:

• In accordance with FIX guidelines all order book handling instructions are handled by messages that

contain repeating groups with tag "269=MDEntryType" having value "0 = Bid", "1 = Offer" or “J = Empty

book”. As such any other repeating group types, such as those with tag "269=MDEntryType" having value

"2 = Trade" should not be used to alter the order book, as the appropriate Order Depth Update messages

for each side of the trade will be sent containing the appropriate order book maintenance actions.

• There is no parity in the values of tag “60 = TransactTime” between the Oder Depth & Top of the

Book/Price Depth books as these are handled independently, i.e. the value of tag “60 = TransactTime” of

an Orde Depth Update message will be different from that of the Top of the Book/Price Depth Update

message that is triggered by the same order altering both books.

Note: Some tags that do not affect the handling of the orders books will be omitted from the example

messages included in this section to improve readability. The actual messages transmitted will include

additional tags.

Page 21 of 38

5.1. Market & ATO/ATC orders

Market orders and At the Opening/At the Close orders (value “Market” in tag “40 = OrdType” and values “2 =

At the Opening (OPG)”/”7 = At the Close“ in tag “40 = OrdType”) do not have a set price (thus do not contain the

tag “270 = MDEntryPx”). Those orders are always placed at the top of the order book for all book types and are

ordered by their release timestamp in the matching engine.

Market and At the Opening orders do not appear in the Top of the Book/Price Depth Books, but do participate in

the procedure for determining the auction opening price.

5.2. Empty Book

Instructs the client to empty a book of a specific instrument. Typically sent at the start of the trading session.

Example Message:

Tag Value

35 MsgType X = MarketDataIncrementalRefresh

1021 MDBookType 2 = Price Depth

279 MDUpdateAction 0 = New

55 Symbol Example Instrument

269 MDEntryType J = Empty book

264 MarketDepth 10 = 10 Levels

A similar message may be sent for any order book type.

Page 22 of 38

5.3. Top of the Book

This type of order book contains only be top price level for an instrument.

Incremental Refresh messages relevant to the Top of the Book of an instrument are sent multiple times during

each trading session in order to give the client the information necessary to keep it up to date.

Examples of how to handle the various possible scenarios follow.

 New – Addition to an empty side

Consider the following initial state for the client’s Top of the Book order book:

Bid Offer

Price Volume No. of Orders Price Volume No. of Orders

- - - 70 20 4

The following message is sent:

Tag Value

35 MsgType X = MarketDataIncrementalRefresh

1021 MDBookType 1 = Top of Book

279 MDUpdateAction 0 = New

55 Symbol Example Instrument

269 MDEntryType 0 = Bid

270 MDEntryPx 50

271 MDEntrySize 10

264 MarketDepth 1 = Top of Book

1023 MDPriceLevel 1

346 NumberOfOrders 2

The message above indicates a new Top of the Book entry for the previously empty bid side. This results in the

client’s Top of the Book order book looking as follows:

Bid Offer

Price Volume No. of Orders Price Volume No. of Orders

50 10 2 70 20 4

Page 23 of 38

 Change – Change of volume / no. of orders

Consider the following initial state for the client’s Top of the Book order book:

Bid Offer

Price Volume No. of Orders Price Volume No. of Orders

50 10 2 70 20 4

The following message is sent:

Tag Value

35 MsgType X = MarketDataIncrementalRefresh

1021 MDBookType 1 = Top of Book

279 MDUpdateAction 1 = Change

55 Symbol Example Instrument

269 MDEntryType 0 = Bid

270 MDEntryPx 50

271 MDEntrySize 4

264 MarketDepth 1 = Top of Book

1023 MDPriceLevel 1

346 NumberOfOrders 1

The message above indicates a change in the volume and no. of orders at the bid side. This results in the client’s

Top of the Book order book looking as follows:

Bid Offer

Price Volume No. of Orders Price Volume No. of Orders

50 4 1 70 20 4

Page 24 of 38

 Delete – A side becomes empty

Consider the following initial state for the client’s Top of the Book order book:

Bid Offer

Price Volume No. of Orders Price Volume No. of Orders

50 4 1 60 6 1

The following message is sent:

Tag Value

35 MsgType X = MarketDataIncrementalRefresh

1021 MDBookType 1 = Top of Book

279 MDUpdateAction 2 = Delete

55 Symbol Example Instrument

269 MDEntryType 1 = Offer

270 MDEntryPx 60

271 MDEntrySize 6

264 MarketDepth 1 = Top of Book

1023 MDPriceLevel 1

346 NumberOfOrders 1

The message above indicates that there are no orders at the offer side for the instrument, resulting in an empty

Top of the Book. This results in the client’s Top of the Book order book looking as follows:

Bid Offer

Price Volume No. of Orders Price Volume No. of Orders

50 4 1 - - -

Page 25 of 38

5.4. Price Depth Book

This type of order book contains the best bids and offers for an instrument, aggregated by price. The maximum

number of levels provided for each price order book depends on the multicast group it is disseminated through.

Incremental Refresh messages relevant to the Price Depth order book of an instrument are sent multiple times

during each trading session in order to give the client the information necessary to keep it up to date.

Examples of how to handle the various possible scenarios follow. The scenarios below assume a max Price Depth

of 3 (tag “264 = MarketDepth” = 3) for simplicity’s sake, but the same concepts apply for any depth.

 New – Level insertion at the bottom of the book

Consider the following initial state for the client’s Price Depth order book:

 Bid Offer

Level Price Volume No. of Orders Price Volume No. of Orders

1 50 5 2 80 4 1

2 40 2 1 90 6 3
3 - - - 100 5 2

The following message is sent:

Tag Value

35 MsgType X = MarketDataIncrementalRefresh

1021 MDBookType 2 = Price Depth

279 MDUpdateAction 0 = New

55 Symbol Example Instrument

269 MDEntryType 0 = Bid

270 MDEntryPx 30

271 MDEntrySize 4

264 MarketDepth 3

1023 MDPriceLevel 3

346 NumberOfOrders 1

The message above indicates a new level at the bottom of the bid side. This results in the client’s Price Depth

order book looking as follows:

 Bid Offer

Level Price Volume No. of Orders Price Volume No. of Orders

1 50 5 2 80 4 1

2 40 2 1 90 6 3

3 30 4 1 100 5 2

Page 26 of 38

 New – Level insertion, causing a shift

Consider the following initial state for the client’s Price Depth order book:

 Bid Offer

Level Price Volume No. of Orders Price Volume No. of Orders

1 60 5 2 80 4 1

2 40 7 2 90 6 3

3 30 4 1 - - -

The following message is sent:

Tag Value

35 MsgType X = MarketDataIncrementalRefresh

1021 MDBookType 2 = Price Depth

279 MDUpdateAction 0 = New

55 Symbol Example Instrument

269 MDEntryType 1 = Offer

270 MDEntryPx 85

271 MDEntrySize 2

264 MarketDepth 3

1023 MDPriceLevel 2

346 NumberOfOrders 1

The message above indicates the insertion of a new level at position 2 of the offer side. When processing this

message, the client should shift the entry that was previously at this level, as well as all levels below it down by

one level. In this example the entry with Price = 90 is shifted, going from level 2 to 3. This results in the client’s

Price Depth order book looking as follows:

 Bid Offer

Level Price Volume No. of Orders Price Volume No. of Orders

1 60 5 2 80 4 1

2 40 7 2 85 2 1

3 30 4 1 90 6 3

Page 27 of 38

 New – Level insertion, causing the deletion of the last level

Consider the following initial state for the client’s Price Depth order book:

 Bid Offer

Level Price Volume No. of Orders Price Volume No. of Orders

1 60 5 2 80 4 1

2 40 7 2 85 2 1

3 30 4 1 90 6 3

The following message is sent:

Tag Value

35 MsgType X = MarketDataIncrementalRefresh

1021 MDBookType 2 = Price Depth

279 MDUpdateAction 0 = New

55 Symbol Example Instrument

269 MDEntryType 0 = Bid

270 MDEntryPx 35

271 MDEntrySize 3

264 MarketDepth 3

1023 MDPriceLevel 3

346 NumberOfOrders 1

The message above indicates the insertion of a new price level at position 3 of the bid side. When processing this

message, the client would shift the entry that was previously at this position, as well as all levels below it down by

one level. In this example the entry with Price = 30 is shifted down by one level, going from 3 to 4, thus exceeding

the max book depth, and as such should be deleted. This results in the client’s Price Depth order book looking as

follows:

 Bid Offer

 Level Price Volume No. of Orders Price Volume No. of Orders

Max
book depth

3

1 60 5 2 80 4 1

2 40 7 2 85 2 1

3 35 3 1 90 6 3

Exceeds max depth 30 4 1

 ↓

 Bid Offer

 Level Price Volume No. of Orders Price Volume No. of Orders

 1 60 5 2 80 4 1

 2 40 7 2 85 2 1

 3 35 3 1 90 6 3

Page 28 of 38

 Change – Change of a level’s volume / no. of orders

Consider the following initial state for the client’s Price Depth order book:

 Bid Offer

Level Price Volume No. of Orders Price Volume No. of Orders

1 50 5 2 80 4 1

2 40 2 1 90 6 3

3 30 4 1 - - -

The following message is sent:

Tag Value

35 MsgType X = MarketDataIncrementalRefresh

1021 MDBookType 2 = Price Depth

279 MDUpdateAction 1 = Change

55 Symbol Example Instrument

269 MDEntryType 0 = Bid

270 MDEntryPx 40

271 MDEntrySize 7

264 MarketDepth 3

1023 MDPriceLevel 2

346 NumberOfOrders 2

The message above indicates a change in the volume and no. of orders at level 2 of the bid side. This results in the

client’s Price Depth order book looking as follows:

 Bid Offer

Level Price Volume No. of Orders Price Volume No. of Orders

1 50 5 2 80 4 1

2 40 7 2 90 6 3

3 30 4 1 - - -

Page 29 of 38

 Delete – Level deletion from the bottom of the book

Consider the following initial state for the client’s Price Depth order book:

 Bid Offer

Level Price Volume No. of Orders Price Volume No. of Orders

1 50 5 2 80 4 1

2 40 2 1 90 6 3

3 30 4 1 100 5 2

The following message is sent:

Tag Value

35 MsgType X = MarketDataIncrementalRefresh

1021 MDBookType 2 = Price Depth

279 MDUpdateAction 2 = Delete

55 Symbol Example Instrument

269 MDEntryType 1 = Offer

270 MDEntryPx 100

271 MDEntrySize 5

264 MarketDepth 3

1023 MDPriceLevel 3

346 NumberOfOrders 2

The message above indicates the deletion of a level at the bottom of the offer side. This results in the client’s Price

Depth order book looking as follows:

 Bid Offer

Level Price Volume No. of Orders Price Volume No. of Orders

1 50 5 2 80 4 1

2 40 2 1 90 6 3

3 30 4 1 - - -

Page 30 of 38

 Delete – Level deletion, causing a shift

Consider the following initial state for the client’s Price Depth order book:

 Bid Offer

Level Price Volume No. of Orders Price Volume No. of Orders

1 60 5 2 80 4 1

2 40 7 2 85 2 1

3 30 4 1 90 6 3

The following message is sent:

Tag Value

35 MsgType X = MarketDataIncrementalRefresh

1021 MDBookType 2 = Price Depth

279 MDUpdateAction 2 = Delete

55 Symbol Example Instrument

269 MDEntryType 0 = Bid

270 MDEntryPx 60

271 MDEntrySize 5

264 MarketDepth 3

1023 MDPriceLevel 1

346 NumberOfOrders 2

The message above indicates the deletion of the first level of the bid side. When processing this message, the

client should remove the level and shift all levels below up by one level. In this example levels 2 and 3 are shifted

up by one level. This results in the client’s Price Depth order book looking as follows:

 Bid Offer

Level Price Volume No. of Orders Price Volume No. of Orders

1 - - - 80 4 1

2 40 7 2 85 2 1

3 30 4 1 90 6 3

↓

Bid Offer

Level Price Volume No. of Orders Price Volume No. of Orders

1 40 7 2 80 4 1

2 30 4 1 85 2 1

3 - - - 90 6 3

Page 31 of 38

5.5. Order Depth Book

This type of order book contains the full order depth for a given instrument. Incremental Refresh messages

relevant to the Order Depth order book of an instrument are sent multiple times during each trading session in

order to give the client the information necessary to keep it up to date.

Examples of how to handle the various possible scenarios follow.

 New – Entry Insertion at the bottom of the book

Consider the following initial state for the client’s Order Depth order book:

Bid Offer

Position Price Volume Order ID Position Price Volume Order ID

1 50 5 105 1 70 4 110

2 50 3 112 2 80 2 102

3 50 2 117 3 80 3 109

4 40 4 101 4 90 4 103

5 30 1 100 5 90 5 120

6 30 7 104

The following message is sent:

Tag Value

35 MsgType X = MarketDataIncrementalRefresh

1021 MDBookType 3 = Order Depth

279 MDUpdateAction 0 = New

55 Symbol Example Instrument

269 MDEntryType 1 = Offer

270 MDEntryPx 90

271 MDEntrySize 3

290 MDEntryPositionNo 6

37 OrderID 121

The message above indicates a new order with price 90 at position 6 of the offer side. This results in the client’s

Order Depth order book looking as follows:

Bid Offer

Position Price Volume Order ID Position Price Volume Order ID

1 50 5 105 1 70 4 110

2 50 3 112 2 80 2 102

3 50 2 117 3 80 3 109

4 40 4 101 4 90 4 103

5 30 1 100 5 90 5 120

6 30 7 104 6 90 3 121

Page 32 of 38

 New – Entry insertion, causing a shift

Consider the following initial state for the client’s Order Depth order book:

Bid Offer

Position Price Volume Order ID Position Price Volume Order ID

1 50 5 105 1 70 4 110

2 50 3 112 2 80 2 102

3 50 2 117 3 80 3 109

4 40 4 101 4 90 4 103

5 30 1 100 5 90 5 120

6 30 7 104 6 90 3 121

The following message is sent:

Tag Value

35 MsgType X = MarketDataIncrementalRefresh

1021 MDBookType 3 = Order Depth

279 MDUpdateAction 0 = New

55 Symbol Example Instrument

269 MDEntryType 0 = Bid

270 MDEntryPx 40

271 MDEntrySize 3

290 MDEntryPositionNo 5

37 OrderID 122

The message above indicates a new order with price 40 at position 5 of the bid side. When processing this

message, the client should shift the entry that was previously at this position, as well as all positions below it by

one. This results in the client’s Order Depth order book looking as follows:

Bid Offer

Position Price Volume Order ID Position Price Volume Order ID

1 50 5 105 1 70 4 110

2 50 3 112 2 80 2 102

3 50 2 117 3 80 3 109

4 40 4 101 4 90 4 103

5 40 3 122 5 90 5 120

6 30 1 100 6 90 3 121

7 30 7 104

Page 33 of 38

 Change – Change of an entry’s volume

The value “1 = Change” for tag “279 = MDUpdateAction” signals a change to an order’s volume. Note that this is

only used when the order’s volume is decreased, as an increase in volume could potentially change the order’s

position and as such would be disseminated by a “3 = Delete” instruction, followed by a “0 = New” instruction.

Consider the following initial state for the client’s Order Depth order book:

Bid Offer

Position Price Volume Order ID Position Price Volume Order ID

1 50 5 105 1 70 4 110

2 50 3 112 2 80 2 102

3 50 2 117 3 80 3 109

4 40 4 101 4 90 4 103

5 40 3 122 5 90 5 120

6 30 1 100 6 90 3 121

7 30 7 104

The following message is sent:

Tag Value

35 MsgType X = MarketDataIncrementalRefresh

1021 MDBookType 3 = Order Depth

279 MDUpdateAction 1 = Change

55 Symbol Example Instrument

269 MDEntryType 1 = Offer

270 MDEntryPx 80

271 MDEntrySize 2

290 MDEntryPositionNo 3

37 OrderID 109

The message above indicates a change in volume at position 3 of the offer side. This results in the client’s Order

Depth order book looking as follows:

Bid Offer

Position Price Volume Order ID Position Price Volume Order ID

1 50 5 105 1 70 4 110

2 50 3 112 2 80 2 102

3 50 2 117 3 80 2 109

4 40 4 101 4 90 4 103

5 40 3 122 5 90 5 120

6 30 1 100 6 90 3 121

7 30 7 104

Page 34 of 38

 Delete – Entry deletion from the bottom of the book

Consider the following initial state for the client’s Order Depth order book:

Bid Offer

Position Price Volume Order ID Position Price Volume Order ID

1 50 5 105 1 70 4 110

2 50 3 112 2 80 2 102

3 50 2 117 3 80 6 109

4 40 4 101 4 90 4 103

5 40 3 122 5 90 5 120

6 30 1 100 6 90 3 121

7 30 7 104

The following message is sent:

Tag Value

35 MsgType X = MarketDataIncrementalRefresh

1021 MDBookType 3 = Order Depth

279 MDUpdateAction 2 = Delete

55 Symbol Example Instrument

269 MDEntryType 0 = Bid

270 MDEntryPx 30

271 MDEntrySize 7

290 MDEntryPositionNo 7

37 OrderID 104

The message above indicates the deletion of the entry at position 7 of the bid side. This results in the client’s Order

Depth order book looking as follows:

Page 35 of 38

Bid Offer

Position Price Volume Order ID Position Price Volume Order ID

1 50 5 105 1 70 4 110

2 50 3 112 2 80 2 102

3 50 2 117 3 80 6 109

4 40 4 101 4 90 4 103

5 40 3 122 5 90 5 120

6 30 1 100 6 90 3 121

7 - - -

↓

Bid Offer

Position Price Volume Order ID Position Price Volume Order ID

1 50 5 105 1 70 4 110

2 50 3 112 2 80 2 102

3 50 2 117 3 80 6 109

4 40 4 101 4 90 4 103

5 40 3 122 5 90 5 120

6 30 1 100 6 90 3 121

 Delete – Entry deletion, causing a shift

Consider the following initial state for the client’s Order Depth order book:

Bid Offer

Position Price Volume Order ID Position Price Volume Order ID

1 50 5 105 1 70 4 110

2 50 3 112 2 80 2 102

3 50 2 117 3 80 6 109

4 40 4 101 4 90 4 103

5 40 3 122 5 90 5 120

6 30 1 100 6 90 3 121

The following message is sent:

Tag Value

35 MsgType X = MarketDataIncrementalRefresh

1021 MDBookType 3 = Order Depth

279 MDUpdateAction 2 = Delete

55 Symbol Example Instrument

269 MDEntryType 1 = Offer

270 MDEntryPx 90

271 MDEntrySize 4

290 MDEntryPositionNo 4

37 OrderID 103

Page 36 of 38

The message above indicates a deletion of the entry at position 4 of the offer side. When processing this message,

the client should remove the entry and shift all entries below up by one position. In this example levels 5 and 6

are shifted up by one level. This results in the client’s Order Depth order book looking as follows:

Bid Offer

Position Price Volume Order ID Position Price Volume Order ID

1 50 5 105 1 70 4 110

2 50 3 112 2 80 2 102

3 50 2 117 3 80 6 109

4 40 4 101 4 90 4 103

5 40 3 122 5 90 5 120

6 30 1 100 6 90 3 121

↓

Bid Offer

Position Price Volume Order ID Position Price Volume Order ID

1 50 5 105 1 70 4 110

2 50 3 112 2 80 2 102

3 50 2 117 3 80 6 109

4 40 4 101 4 90 5 120

5 40 3 122 5 90 3 121

6 30 1 100

5.6. Order Books in Snapshots

The Snapshots received in the various types of multicast groups contain all the required information to construct

the order books for each instrument.

The Snapshot messages follow the same format as the Incremental messages described in the previous sections,

with the following differences:

• The tag “35 = MsgType” contains the value “W = MarketDataSnapshotFullRefresh”.

• The tag “279 = MDUpdateAction” is absent, all messages are treated as if the value was “0 = New”.

• An “Empty Book” message is contained in Snapshots for instruments with an empty book of that type.

By applying the same methods described in the previous sections and taking into considerations these differences,

a client can construct the instrument’s initial order books by utilizing the snapshots and keep them up to date by

applying the incremental feeds.

Page 37 of 38

6. Appendix

6.1. Comparison With Legacy IDS Service (IOCP)

The MDFS is intended to completely replace the legacy IDS Service (IOCP).

The main differences between the two systems are:

1. The way they approach the dissemination of the market data originating from the trading platform.

The IDS Service is at its core a translation of internal messages generated by the trading platform to the

proprietary IDS format messages, more tailored to fit the needs of the clients (exchange members & data

vendors). The client has the option to request retransmission of previously disseminated data in the exact

form it was previously transmitted as.

In contrast the MDFS is focused on providing fast, up-to-date information on the current state of all the

instruments being traded in the trading platform and on keeping the various order books current. The

messaging protocol is no longer proprietary, but the industry standard FIX / FAST protocol is used.

2. The incremental / snapshot paradigm.

The IDS service would send redundant and duplicate information on many occasions, as a result of not

following an incremental update approach. Messages would contain information that had already been

transmitted previously, when only a small subset of fields had changed. Clients would also need to have

received the entirety of the market data messages generated during a trading session in order to be up

to date with the current state of the session.

The MDFS by following the incremental update / snapshot approach can minimize the sending of

redundant information and improve the efficiency of the data transmission. In addition, by providing

snapshots, the MDFS offers clients the option to get the current state of the trading session in a fast and

efficient manner, without having to receive and process any past data they may not be interested in.

3. The networking and architectural paradigms they employ.

The IDS Service uses TCP networking for all communication with the client, this necessitates the existence

of a session protocol (implemented through the IOCP’s Control channel) in addition to the data

transmission channels. This provides reliable transmission but comes with considerable overhead, with

message retransmissions further impacting performance.

The MDFS uses UDP multicast to disseminate market data, in accordance with industry standards and

best practices. This approach, when combined with FAST message encoding, results in much lower

latency and bandwidth usage. Another benefit of this approach is the lack of a need for a session protocol

Page 38 of 38

as all authentication / authorization is done at the network level, which simultaneously allows for more

granular access to different feed types. It does come with some inherent unreliability due to the nature

of the UDP network protocol, but the MDFS’ architecture has multiple ways to combat this such as the

concurrent A & B Services and the snapshot recovery mechanism.

4. The timestamps format they use.

The MDFS follows the FIX Protocol standard of sending all timestamps in UDP and YYYYMMDD-

HH:MM:SS.ssssss format. This is in contrast to the legacy IDS service which sent all timestamps in local

time and YYYYMMDDHHMMSSssssss format.

Those differences result in the MDFS being a much more modern and performant service, that improves the way

clients access the exchange’s market data feed and potentially reduces costs by providing data in an established

and widely used format.

6.2. FAST Template XML Example

The following FAST Template is an example of the format that is used by MDFS to encode & decode FIX

messages. An XML file with templates for all of MDFS’ message types is provided.

<template id="34" name="ExampleMessage">
 <string name="MsgType" id="35">
 <constant value="W"/>
 </string>
 <uInt32 name="MDBookType" id="1021" presence="optional">
 <default />
 </uInt32>
 <string name="Symbol" id="55" presence="optional">
 <default/>
 </string>
 <sequence name="MDTestGroup" presence="optional">
 <length name="NoMDEntries" id="268">
 <default/>
 </length>
 <uInt32 name="MDPriceLevel" id="1023" presence="optional">
 <default/>
 </uInt32>
 <decimal name="MDEntrySize" id="271" presence="optional">
 <default/>
 </decimal>
 <decimal name="MDEntryPx" id="270" presence="optional">
 <default/>
 </decimal>
 </sequence>
</template>

	Revision History
	Table of Contents
	Table of Figures
	1. Introduction
	2. Architecture Overview
	2.1. Multicast Groups & Services
	2.2. Incremental Feed Approach

	3. Connection Procedure & Data Flow
	3.1. Initial Connection Procedure
	3.2. Updating the Order Book
	3.3. Handling Data Feeds on Services A&B
	3.4. Handling Gaps in Message Sequence Numbers
	3.5. Recovery via Snapshot
	3.6. TCP/IP Retransmission Service
	3.6.1. TCP/IP Retransmission Procedure

	4. FAST Message Encoding
	4.1. Packet Structure
	4.2. Data Types
	4.3. Templates & Implicit Tagging
	4.4. Mandatory and Optional Fields
	4.5. Field Operators
	4.6. Presence Map (PMAP)
	4.7. Stop Bit Encoding
	4.8. Binary Encoding
	4.9. Decoding Overview
	4.10. Decoding Example

	5. Order Book Handling
	5.1. Market & ATO/ATC orders
	5.2. Empty Book
	5.3. Top of the Book
	5.3.1. New – Addition to an empty side
	5.3.2. Change – Change of volume / no. of orders
	5.3.3. Delete – A side becomes empty

	5.4. Price Depth Book
	5.4.1. New – Level insertion at the bottom of the book
	5.4.2. New – Level insertion, causing a shift
	5.4.3. New – Level insertion, causing the deletion of the last level
	5.4.4. Change – Change of a level’s volume / no. of orders
	5.4.5. Delete – Level deletion from the bottom of the book
	5.4.6. Delete – Level deletion, causing a shift

	5.5. Order Depth Book
	5.5.1. New – Entry Insertion at the bottom of the book
	5.5.2. New – Entry insertion, causing a shift
	5.5.3. Change – Change of an entry’s volume
	5.5.4. Delete – Entry deletion from the bottom of the book
	5.5.5. Delete – Entry deletion, causing a shift

	5.6. Order Books in Snapshots

	6. Appendix
	6.1. Comparison With Legacy IDS Service (IOCP)
	6.2. FAST Template XML Example

